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IBVP for focusing NLS
with decaying initial data and (asymptotically) periodic boundary conditions

Let q(x , t) be the solution of the IBV problem for focusing NLS:
iqt + qxx + 2|q|2q = 0, x > 0, t > 0,
q(x ,0) = q0(x) fast decaying as x → +∞

q(0, t) = g0(t) time-periodic g0(t) = α e2iωt α > 0, ω ∈ R
(q(0, t)− α e2iωt → 0 as t → +∞)

. Question: How behaves q(x , t) for large t ?

. Numerics: Qualitatively different pictures for parameter
ranges:

(i) ω < −3α2

(ii) −3α2 < ω < α2

2

(iii) ω > α2

2
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Numerics for ω < −3α2, I

Real part Re q(x , t) Imaginary part Im q(x , t)

α =
√

3/8, ω = −13/8 q0(x) ≡ 0, g0(t) = αe2iωt + O(e−10t2
)
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Numerics for ω < −3α2, II

Numerical solution for t = 20, 0 < x < 100.
Upper: real part Re q(x ,20). Lower: imaginary part Im q(x ,20).
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Numerics for ω ≥ α2/2

Amplitude of q(x , t) Amplitude for t = 10, . . .

α = 0.5, ω = 1, ω ≥ α2/2, q0(x) ≡ 0, g0(t) = αe2iωt + O(e−10t2
)
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Numerics for −3α2 < ω < α2/2

Amplitude of q(x , t)

α = 0.5
ω = −2α2 = −0.5

α = 0.5
ω = −α2 = −0.25

q0(x) ≡ 0, g0(t) = α e2iωt + O(e−10t2
)
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Inverse Scattering Transform for whole line problems, I

A nonlinear PDE in dimension 1+1 qt = F (q, qx , ...) integrable⇔ it is compatibility
condition for 2 linear equations (Lax pair): matrix-valued (2× 2); involve parameter k

• Ψx = UΨ, Ψt = V Ψ

U = U(q; k), V = V (q, qx , . . . ; k)

• qt = F (q, qx , ...)⇐⇒ Ψxt = Ψtx for all k : Ut − Vx = [V ,U]

Cauchy (whole line) problem: given q(x , 0) = q0(x), x ∈ (−∞,∞) (q0(x)→ 0 as
|x | → ∞), find q(x , t).

Solution: q(x , 0)→ s(k ; 0)→ s(k ; t)→ q(x , t).

• q(x , 0)→ s(k ; 0): direct spectral (scattering) problem for x-equation of the Lax pair

• s(k ; 0)→ s(k ; t): evolution of spectral functions (linear!)

• s(k ; t)→ q(x , t): inverse spectral (scattering) problem for x-equation
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Inverse Scattering Transform for whole line problems, II

In the case of NLS:
• U = −ikσ3 + Q; V = 2ik2σ3 + Q̃ σ3 =

(
1 0
0 −1

)
with Q =

(
0 q
−q̄ 0

)
, Q̃ = 2kQ − iQxσ3 − i|q|2σ3

• direct scattering: introduce Ψ± dedicated solutions of
Ψx = U(q(x , t); k)Ψ:

Ψ± ∼ Ψ0(= e−ikxσ3), x → ±∞

Then Ψ+(x ; t , k) = Ψ−(x ; t , k)s(k ; t) (scattering relation)
• evolution of scattering functions:

st = 2ik2[σ3, s]⇒ s(k ; t) = e−i2k2tσ3s(k ; 0)ei2k2tσ3
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Inverse Scattering Transform for whole line problems, III

• s(k ; t)→ q(x , t): inverse spectral (scattering) problem for
x-equ. Can be done in terms of Riemann-Hilbert problem
(RHP):

find M: 2× 2, piecewise analytic in C (w.r.t. k ) s.t.
• M+(x , t ; k) = M−(x , t ; k)e−i(2k2t+kx)σ3 s̃(k ; 0)ei(2k2t+kx)σ3 , k ∈ R

(s(k ; 0)→ s̃(k ; 0) : algebraic manipulations)

• M → I as |k | → ∞
• in case of M piecewise meromorphic: residue conditions at poles

Then q(x , t) = 2i limk→∞ (kM12(x , t , k)) .

Hint: M is constructed from columns of Ψ+ and Ψ− following
their analyticity properties w.r.t k ; then jump relation for RHP is
a re-written scattering relation for Ψ±.
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Inverse Scattering Transform for whole line problems, IV

Thus the Inverse Scattering Transform (IST) method: a kind of
change of variables that linearizes the problem.

Importance: most efficient for studying long-time behavior of
solutions of Cauchy problem with general initial data. This is
due to explicit (x , t)-dependence of data for the RHP (jump
matrix; residue conds. if any), which makes possible to apply a
nonlinear version of the steepest descent method (Deift, Zhou,
2993) for studying asymptotic behavior of solutions of relevant
Riemann–Hilbert problems with oscillatory jump conditions
(linear analogue: asymptotic evaluation of contour integrals by
Laplace or stationary phase methods).
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General scheme for boundary value problems via IST

Natural problem: to adapt (generalize) the RHP approach to
boundary-value (initial-boundary value) problems for integrable
equations.

Data for an IBV problem (e.g, in domain x > 0, t > 0):

(i) Initial data: q(x ,0) = q0(x), x > 0

(ii) Boundary data: q(0, t) = g0(t), qx (0, t) = g1(t), . . . .

Question: How many boundary values?
For a well-posed problem: roughly “half” the number of x-derivatives.

For NLS: one b.c. (e.g., q(0, t) = g0(t)).

General idea for IBV: use both equations of the Lax pair as spectral
problems.

Common difficulty: spectral analysis of the t-equation on the
boundary (x = 0) involves more functions (boundary values
q(0, t),qx (0, t), . . . ) than possible data for a well-posed problem.
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Half-line problem for NLS

For NLS: t-equation involves q and qx ; hence for the (direct) spectral analysis at x = 0
one needs q(0, t) and qx (0, t). Assume that we are given the both. Then one can
define two sets of spectral functions coming from the spectral analysis of x-equation
and t-equation.

(i) q0 7→ {a(k), b(k)} (direct problem for x-equ); s ≡
(

a b
−b̄ ā

)
{g0, g1} 7→ {A(k),B(k)} (direct problem for t-equ)

(ii) From the spectral functions {a(k), b(k),A(k),B(k)}, the jump matrix J(x , t , k) for
the Riemann-Hilbert problem is constructed: {a(k), b(k),A(k),B(k)} 7→ J0(k):

J(x , t , k) = e−i(2k2t+kx)σ3 J0(k)ei(2k2t+kx)σ3

(notice the same explicit dependence on (x , t)!) The jump conditions are across
a contour Γ determined by the asymptotic behavior of g0(t) and g1(t)

(iii) The RHP is formulated relative to Γ:
M+(x , t , k) = M−(x , t , k)J(x , t , k), k ∈ Γ; M → I as k →∞

(iv) Similarly to the Cauchy (whole-line) problem, the solution of the IBV (half-line)
problem is given in terms of the solution of the RHP:
q(x , t) = 2i limk→∞ (kM12(x , t , k))
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Direct spectral problems for NLS in half-strip x > 0, 0 < t < T

Given q0(x), determine a(k), b(k): a(k) = Φ2(0, k), b(k) = Ψ1(0, k),
where vector Φ(x , k) is the solution of the x-equation evaluated at t = 0:

Φx + ikσ3Φ = Q(x , 0, k)Φ, 0 < x <∞, Im k ≥ 0

Φ(x , k) = eikx
((

0
1

)
+ o(1)

)
as x →∞,

Q(x , 0, k) =

(
0 q0(x)

−q̄0(x) 0

)
Given {g0(t), g1(t)}, determine A(k ; T ),B(k ; T ):
A(k ; T ) = e2ik2T Φ̃2(T , k̄), B(k ; T ) = −e2ik2T Φ̃2(T , k),
where vector Φ̃(x , k) is the solution of the t-equation evaluated at x = 0:

Φ̃t + 2ik2σ3Φ̃ = Q̃(0, t , k)Φ̃, 0 < t < T ,

Φ̃(0, k) =

(
0
1

)

Q̃(0, t , k) =

(
−|g0(t)|2 2kg0(t)− ig1(t)

2kḡ0(t) + iḡ1(t) |g0(t)|2
)
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RHP for NLS in half-strip x > 0, 0 < t < T

Contour: Γ = R ∪ iR
Jump matrix:

J0(k) =



(
1 + |r(k)|2 r̄(k)

r(k) 1

)
, k > 0,(

1 0
C(k ; T ) 1

)
, k ∈ iR+,(

1 C̄(k̄ ; T )

0 1

)
, k ∈ iR−,(

1 + |r(k) + C(k ; T )|2 r̄(k) + C̄(k ; T )

r(k) + C(k ; T ) 1

)
, k < 0,

where r(k) =
b̄(k)

a(k)
, C(k ; T ) = −

B(k̄ ; T )

a(k)d(k ; T )
with d = aĀ + bB̄

(also works for T = +∞ if g0(t), g1(t)→ 0, t →∞)
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Eigenfunctions for NLS in half-strip x > 0, 0 < t < T

Hint: Define Ψj (x , t , k), j = 1, 2, 3 solutions (2× 2) of the Lax pair equations
normalized at “corners” of the (x , t)-domain where the IBV problem is formulated:

1 Ψ1(0,T , k) = e−2ik2Tσ3 (Ψ1(0, t , k) ' e−2ik2tσ3 as t →∞)

2 Ψ2(0, 0, k) = I

3 Ψ3(x , 0, k) ' e−ikxσ3 as x →∞

They can be constructed as solutions of integral equations let µj = Ψj e(ikx+2ik2t)σ3 ;
then

µ1(x , t , k) = I +

∫ x

0
eik(x−y)σ̂3 (Qµ1)(y , t , k) dy

− eikxσ̂3

∫ T

t
e−4ik3(t−τ)σ̂3 (Q̃µ1)(0, τ, k) dτ, (1)

µ2(x , t , k) = I +

∫ x

0
eik(x−y)σ̂3 (Qµ2)(y , t , k) dy

+ eikxσ̂3

∫ t

0
e−4ik3(t−τ)σ̂3 (Q̃µ2)(0, τ, k) dτ, (2)

µ3(x , t , k) = I −
∫ ∞

x
eik(x−y)σ̂3 (Qµ3)(y , t , k) dy . (3)

Here eÂB := eABe−A.
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Scattering for x-and t-equations

Integral equations: convenient for studying properties w.r.t k : analyticity; boundedness.
Indeed, this follows the analyticity/boundedness of the involved exponentials.

Being simultaneous solutions of x-and t-equation, they are related by two scattering
relations:

(i) Ψ3(x , t , k) = Ψ2(x , t , k)s(k) s =

(
ā b
−b̄ a

)
(ii) Ψ1(x , t , k) = Ψ2(x , t , k)S(k ; T ) S =

(
Ā B
−B̄ A

)
Then M is constructed from columns of Ψ1, Ψ2 and Ψ3 following their analyticity and
boundedness properties w.r.t k , and the jump relation for RHP is re-written scattering
relations (i)+(ii) for Ψj .

For NLS in half-strip (T <∞) or in quarter plane (T =∞) with gj (t)→ 0 as t →∞:

first column of Ψ1(x , t , k)e(−ikx−2ik2t)σ3 is bounded in {k : Im k ≥ 0, Im k2 ≤ 0}, etc.,
which leads to Γ = R ∪ iR.
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Compatibility of boundary values: Global Relation

The fact that the set of initial and boundary values {q0(x), g0(t), g1(t)} cannot be
prescribed arbitrarily (as data for IBVP) must be reflected in spectral terms.

Indeed, from scattering relations (i)+(ii): S−1(k ; T )s(k) = Ψ−1(x , t , k)Ψ3(x , t , k).
Evaluating this at x = 0, t = T and using analyticity and boundedness properties of Ψj
one deduce for the (12) entry of S−1s:

A(k ; T )b(k)− a(k)B(k ; T ) = O

(
e4ik2T

k

)
, k →∞, Im k ≥ 0,Re k ≥ 0

This relation is called Global Relation (GR): it characterizes the compatibility of
{q0(x), g0(t), g1(t)} in spectral terms.

Typical theorem: Consider the IBVP with given q0(x) and g0(t). Assume that there
exists g1(t) such that the associated spectral functions {a(k), b(k),A(k),B(k)} satisfy
the Global Relation. Then the solution of the IBVP is given in terms of the solution of
the RHP above. Moreover, it satisfies also the b.c. qx (0, t) = g1(t).

17 / 41



Using Global Relation
1. GR can be used to describe the Dirichlet-to-Neumann map, i.e., to derive

g1(t) = qx (0, t) from {q0(x) = q(x , 0), g0(t) = q(0, t)};

g1(t) =
g0(t)
π

∫
∂D

e−2ik2t
(

Φ̃2(t , k)− Φ̃2(t ,−k)
)

dk +
4i
π

∫
∂D

e−2ik2t kr(k)Φ̃2(t , k̄)dk

+
2i
π

∫
∂D

e−2ik2t (k [Φ̃1(t , k)− Φ̃1(t ,−k)] + ig0(t))dk

But: nonlinear! (g1 is involved in the construction of Φ̃j )
In the small-amplitude limit, reduces to a formula giving g1(t) in terms of g0(t)
and q0(x) (via r(k)); here NLS reduces to a linear equation iqt + qxx = 0.
This suggests perturbative approach: given g0(t) say periodic with small
amplitude, one derives a perturbation series for g1(t) with periodic terms.

2. For some particular b.c. (called linearizable): use additional k -invariance in
t-equation for expressing all ingredients in jump matrix in terms of spectral data
associated with initial data only. Example: IBVP with homogeneous Dirichlet b.c.
(g0(t) ≡ 0); also Neumann b.c. (g1(t) ≡ 0) and mixed (Robin) b.c.

3. For T =∞: if g0(t)→ 0 as t →∞ and assuming that g1(t)→ 0, the GR takes
the form

A(k)b(k)− a(k)B(k) = 0, Im k ≥ 0,Re k ≥ 0

Since the structure of the RHP is similar to that for whole-line problem, one can
study long-time behavior of solution via nonlinear steepest descent.
But: parameters of the asymptotics - in terms of A(k),B(k), which are not known
for a well-posed IBVP.
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IBV problem with oscillatory b.c.

For T =∞: the approach can be implemented for boundary
values non-decaying as t →∞. But for this: one needs correct
large-time behavior of g1(t) associated with that of the given
g0(t); this is because both g0(t) and g1(t) determine the
spectral problem for t-equation and thus the structure of
associated spectral functions A(k), B(k).
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Dirichlet-to-Neumann map

Let q(0, t) = α e2iωt (q(0, t)− α e2iωt → 0, t →∞)
Neumann values (qx (0, t)):

(i) numerics:

qx (0, t) ' c e2iωt c =

2iα
√
α2−ω

2 , ω ≤ −3α2

±α
√

2ω − α2, ω ≥ α2

2

(ii) theoretical results: agreed with numerics (for all x > 0, t > 0) provided c as
above.

Question: Why these particular values of c?

(the spectral mapping {g0, g1} 7→ {A(k),B(k)} is well-defined for any c ∈ C !)

Idea: Use the global relation (its impact on analytic properties of A(k), B(k)) to specify
admissible values of parameters α, ω, c.
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Numerics: Neumann values, ω < −3α2

Neumann values qx (0, t) for α = 0.5 and ω = −1.75.
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The numerics agree with qx (0, t) = 2iαβ q(0, t).
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Theorem 1: ω < −3α2

Consider the Dirichlet initial-boundary value problem for NLS+

• iqt + qxx + 2|q|2q = 0, x , t ∈ R+,
• q(x ,0) = q0(x) fast decaying,

• q(0, t) = g0(t) ≡ α e2iωt time-periodic, α > 0, ω < −3α2

• q0(0) = g0(0).

. Assume qx (0, t) ∼ 2iαβ e2iωt as t → +∞ with β =
√

α2−ω
2 .

Let ξ := x
4t . Then for large t , the solution q(x , t) behaves differently in

3 sectors of the (x , t)-quarter plane (in agreement with numerics):

(i) ξ > β =⇒ q(x , t) looks like decaying modulated oscillations of
Zakharov-Manakov type.

(ii)
√
β2 − 2α2 < ξ < β =⇒ q(x , t) looks like a modulated elliptic

wave.

(iii) 0 ≤ ξ <
√
β2 − 2α2 =⇒ q(x , t) looks like a plane wave.
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Three regions for ω < −3α2

Regions in the (x , t)-quarter-plane: ξ = x
4t , β =

√
α2−ω

2
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Asymptotics for ω < −3α2

• ξ = x
4t > β:

q(x , t) =
1√
t
ρ(−ξ)e4iξ2t+2iρ2(−ξ) log t+iφ(−ξ) + o

( 1√
t

)
• β − α

√
2 < ξ < β:

q(x , t) ' [α+Im d(ξ)]
θ3[Bg t/2π + Bω∆/2π + U−]

θ3[Bg t/2π + Bω∆/2π + U+]

θ3[U+]

θ3[U−]
e2ig∞(ξ)t−2iφ(ξ)

• 0 < ξ < β − α
√

2:

q(x , t) = α e2i[βx+ωt−φ(ξ)] + O
( 1√

t

)
The parameters (functions of ξ) d ,Bg ,Bω,g∞, φ can be expressed in
terms of the spectral functions associated to IB data
{q0(x),g0(t),g1(t)}.
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The RHP for NLS: the contour
for ω < −3α2, assuming qx (0, t) ∼ 2iαβ e2iωt

Γ̂ := R ∪ γ ∪ γ̄ ∪ Γ ∪ Γ̄ with E = −β + iα.
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The RHP for NLS: the jump matrix

J(x , t ; k) =



(
1 −ρ̄(k)e−2itθ(k)

−ρ(k)e2itθ(k) 1 + |ρ(k)|2

)
k ∈ (−∞, κ+),(

1 −r̄(k)e−2itθ(k)

−r(k)e2itθ(k) 1 + |r(k)|2

)
k ∈ (κ+,∞),(

1 0
c(k)e2itθ(k) 1

)
k ∈ Γ,(

1 c̄(k̄)e−2itθ(k)

0 1

)
k ∈ Γ̄,(

1 0
f (k)e2itθ(k) 1

)
k ∈ γ,(

1 −f̄ (k̄)e−2itθ(k)

0 1

)
k ∈ γ̄.

where θ(k) = θ(k , ξ) = 2k2 + 4ξk with ξ =
x
4t
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Numerics: Neumann values, ω ≥ α2/2

Neumann values qx (0, t) for α = 0.5 and ω = 1.
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The numerics agree with qx (0, t) = 2αβ̂ q(0, t).

27 / 41



Theorem 2: ω ≥ α2/2

Consider the Dirichlet initial-boundary value problem for NLS+

• iqt + qxx + 2|q|2q = 0, x , t ∈ R+.
• q(x ,0) = q0(x) fast decaying.

• q(0, t) = g0(t) ≡ α e2iωt time-periodic, α > 0, ω ≥ α2/2

• q0(0) = g0(0).
. Assume that qx (0, t) ∼ 2αβ̂ e2iωt with β̂ = ± 1

2

√
2ω − α2.

Then for ξ = x
4t > ε > 0,

q(x , t) =
1√
t
ρ(−ξ)e4iξ2t+2iρ2(−ξ) log t+iφ(−ξ) + o

( 1√
t

)
(decaying modulated oscillations of Zakharov-Manakov type), where
parameters ρ(ξ) and φ(ξ) are determined by the IB data q0(x), g0(t),
and g1(t) via the spectral functions a(k),b(k),A(k),B(k).
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Theorem 3: admissible {α, ω, c}

Let q(x , t) be a solution of the NLS (x > 0, t > 0) such that:

• q(0, t)− α e2iωt → 0 as t → +∞ (α > 0, ω ∈ R)

• qx (0, t)− c e2iωt → 0 as t → +∞, for some c ∈ C

• q(x , t)→ 0 as x → +∞ (∀t ≥ 0)

Then the admissible values of {α, ω, c} are given by:

• ω ≤ −3α2, c = 2iα
√

α2−ω
2

• ω ≥ α2

2 , c = ±α
√

2ω − α2.
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Idea of proof

1. For all {g0, g1} whose asymptotics is associated with {α, ω, c}, where c = c1 + ic2,
the t-equation of the Lax pair for the NLS (at x = 0) has a solution Φ(t , k),
k ∈ Σ = {k : Im Ω(k) = 0}, s.t.

Φ(t , k) = Ψ(t , k)(1 + o(1)) as t → +∞, where

Ψ(t , k) = eiωtσ3 E(k)e−iΩ(k)tσ3 ,

E(k) =

√
2Ω− H

2Ω

(
1 − iH

2ak−ic̄
− iH

2ak+ic 1

)
with H(k) = Ω(k)− 2k2 + a2 − ω,

Ω2(k) = k4 + 4ωk2 − 4αc2k + (α2 − ω)2 + c2
1 + c2

2 .

2. Γ = Σ ∪ {branch cuts} is the contour for the RH problem for the inverse spectral
mapping {A(k),B(k)} → {g0, g1}.

3. Compatibility of {q0, g0, g1} in spectral terms: global relation

A(k)b(k)− a(k)B(k) = 0, k ∈ D = {k : Im k > 0, Im Ω(k) > 0}.

4. Existence of a (finite) arc of Γ0 = Σ ∩ {branch cuts} in D contradicts the global
relation (particularly, the continuity of b(k) and a(k) across the arc).
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Non-admissible spectral curves: ω > 0, I

c2 > 0 c2 < 0
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Non-admissible spectral curves: ω > 0, II

c2 = 0, 0 < ω < α2

2 c2 = 0, c2
1 < α2(2ω − α2)
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Admissible spectral curves: ω < 0

Range ω < 0, c2 > 0: the only admissible case is when the finite arc
of {Im Ω(k) = 0} lying on the right branch of the curve {Im Ω2(k) = 0}
degenerates to a point on R, i.e., when Ω2(k) has a double, positive
zero. In terms of {α, ω, c}, this corresponds to:

c1 = 0, c2 = α
√

2(α2 − ω).
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Numerics for −3α2 < ω < α2/2, II

α = 0.05, ω = 0 q0(x) ≡ 0, g0(t) = α + O(e−10t2
)
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Numerics for −3α2 < ω < α2/2, III

α = 0.3, ω = 0 q0(x) ≡ 0, g0(t) = α + O(e−10t2
)
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Numerics for −3α2 < ω < α2/2, IV

α = 0.5, ω = 0 q0(x) ≡ 0, g0(t) = α + O(e−10t2
)
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Numerics for −3α2 < ω < α2/2, V

α = 1, ω = 0 q0(x) ≡ 0, g0(t) = α + O(e−10t2
)
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Linearizable cases: q(0, t) = 0 or qx(0, t) = 0 or
qx(0, t) + ρq(0, t) = 0 (Robin b.c.)

(i) additional symmetry: A(−k) = A(k), B(−k) = − 2k+iρ
2k−iρB(k)

(ii) global relation: A(k)b(k)− B(k)a(k) = 0, Im k > 0,Re k > 0

(i)+(ii) allows “solving” A(k), B(k) in terms of a(k), b(k), so that the
jump matrix for RHP can be expressed in terms of a(k) and b(k) (and
ρ) only:

C̃(k) =
b̄(−k̄)

a(k)

2k + iρ
(2k − iρ)a(k)ā(−k̄)− (2k + iρ)b(k)b̄(−k̄)

Moreover, the RH problem on the cross can be deformed to RH
problem on the real line (associated with initial value problem for NLS
on the whole line)
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Relationship to other problems

1 Novel integral representations for the solution of linear
problems (A.S. Fokas: Unified Approach). For linear
problems:
(i) the Lax pair representation can be constructed
algorithmically;
(ii) the global relation that couples given initial and
boundary data with unknown boundary values can be
solved efficiently.

initial-boundary value problems for evolution PDEs
containing x-derivatives of arbitrary order
elliptic equations in two variables (like the Laplace, the
Helmholtz equations) formulated in the interior of a convex
polygon

2 initial-value (Cauchy) problems with non-decaying
(step-like) initial data
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