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IBVP for focusing NLS

with decaying initial data and (asymptotically) periodic boundary conditions

Let g(x, t) be the solution of the IBV problem for focusing NLS:
liQI+qxx+2’CI|2q:0, x>0,t>0,
m g(x,0) = qo(x) fast decaying as x — +oo

m (0, 1) = go(t) time-periodic | go(t) = ae®!| a>0,w e R
(g(0,1) — ae®™! - 0ast— +o0)

> Question: How behaves q(x, t) for large t?

> Numerics: Qualitatively different pictures for parameter
ranges:
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Numerics for w < —3a?2, |
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D¢

3/41



Numerics for w < —3a?, |l

Numerical solution for t = 20, 0 < x < 100.
Upper: real part Re g(x, 20). Lower: imaginary part Im g(x, 20).
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Numerics for w > a</2
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qo(x) = 0, go(t) = ae®*! + O(e~"°F)
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Numerics for —3a0? < w < a?/2

Amplitude of q(x, t)
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Go(x) =0, 9o(t) = ae®! 4 O(e~ 1)
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Inverse Scattering Transform for whole line problems, |

A nonlinear PDE in dimension 1+1 q: = F(q, qx, ...) integrable < it is compatibility
condition for 2 linear equations (Lax pair): matrix-valued (2 x 2); involve parameter k
o VW, =UV, V,=VV

U:U(qu)v V:V(qvqxvrk)

o gt =F(q,9x,...) <= Wy =Wy forallk: U — Vx=[V,U]

Cauchy (whole line) problem: given q(x,0) = go(x), X € (—00,0) (go(x) — 0 as
|x] = o0), find g(x, t).

Solution: q(x,0) — s(k;0) — s(k; t) — q(x, t).

e q(x,0) — s(k;0): direct spectral (scattering) problem for x-equation of the Lax pair
e 5(k;0) — s(k; t): evolution of spectral functions (linear!)
o s(k;t) — q(x,t): inverse spectral (scattering) problem for x-equation
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Inverse Scattering Transform for whole line problems, I

In the case of NLS:

e U= —ik03 =+ Q; V = 2ik203 + é o3 = (:) _01>

with Q = ( 0 g) Q = 2kQ — Qo3 — i|q|20s

e direct scattering: introduce V. dedicated solutions of
Wy = U(q(x, t); k)W

YV, ~ Yy(= e_ikXUS),X — +o00

Then W (x;t,k) = V_(x; t, k)s(k; t) (scattering relation)

e evolution of scattering functions: .
st = 2ik?[og, 5] = s(k; t) = e 12K*tos 5(k; 0)ei2k*tos
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Inverse Scattering Transform for whole line problems, IlI

e s(k;t) — q(x,t): inverse spectral (scattering) problem for
x-equ. Can be done in terms of Riemann-Hilbert problem
(RHP):

find M: 2 x 2, piecewise analytic in C (w.r.t. k) s.t.
o M, (x,t;k) = M_(x, t; k)e i@+ 5 k. 0)ei(@K°tHh)os - | ¢ R

(s(k;0) — 8(k;0) : algebraic manipulations)

e M — las |k| - x
e in case of M piecewise meromorphic: residue conditions at poles

Then g(x, t) = 2ilimy_,o (kMi2(x, t, k)) .

Hint: M is constructed from columns of W and W_ following
their analyticity properties w.r.t k; then jump relation for RHP is
a re-written scattering relation for v_..



Inverse Scattering Transform for whole line problems, IV

Thus the Inverse Scattering Transform (IST) method: a kind of
change of variables that linearizes the problem.

Importance: most efficient for studying long-time behavior of
solutions of Cauchy problem with general initial data. This is
due to explicit (x, t)-dependence of data for the RHP (jump
matrix; residue conds. if any), which makes possible to apply a
nonlinear version of the steepest descent method (Deift, Zhou,
2993) for studying asymptotic behavior of solutions of relevant
Riemann—Hilbert problems with oscillatory jump conditions
(linear analogue: asymptotic evaluation of contour integrals by
Laplace or stationary phase methods).
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General scheme for boundary value problems via IST

Natural problem: to adapt (generalize) the RHP approach to
boundary-value (initial-boundary value) problems for integrable
equations.

Data for an IBV problem (e.g, in domain x > 0, t > 0):
(i) Initial data: g(x,0) = go(x), x >0
(i) Boundary data: g(0, t) = go(t), 9x(0, ) = g1(1), .. ..

Question: How many boundary values?
For a well-posed problem: roughly “half” the number of x-derivatives.

For NLS: one b.c. (e.g., q(0, t) = go(t)).

General idea for IBV: use both equations of the Lax pair as spectral
problems.

Common difficulty: spectral analysis of the t-equation on the
boundary (x = 0) involves more functions (boundary values
q(0, t), gx(0, t), .. .) than possible data for a well-posed problem.
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Half-line problem for NLS

For NLS: t-equation involves g and qx; hence for the (direct) spectral analysis at x = 0
one needs q(0, t) and gx (0, t). Assume that we are given the both. Then one can
define two sets of spectral functions coming from the spectral analysis of x-equation
and f-equation.

(M

(ii)

(iif)

(iv)

qo — {a(k), b(k)} (direct problem for x-equ); s= (—ab g)
{90, 91} — {A(k), B(k)} (direct problem for t-equ)

From the spectral functions {a(k), b(k), A(k), B(k)}, the jump matrix J(x, t, k) for
the Riemann-Hilbert problem is constructed: {a(k), b(k), A(k), B(k)} — Jo(k):

J(x, t, k) = e—i@KPtHkx)og Jo(k)ei(2k2t+kx)53

(notice the same explicit dependence on (x, t)!) The jump conditions are across
a contour I' determined by the asymptotic behavior of go(t) and gy (¢)

The RHP is formulated relative to I':

My(x, t, k) = M_(x,t,k)J(x,t,k), kK eT; M — las k — oo

Similarly to the Cauchy (whole-line) problem, the solution of the IBV (half-line)

problem is given in terms of the solution of the RHP:
qlx, t) = 2ilim_, o (kMi2(x, t, k))
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Direct spectral problems for NLS in hatt-stripx > 0,0 < t < 7

m Given gqop(x), determine a(k), b(k): a(k) = ®»(0, k), b(k) = W(0, k),
where vector ®(x, k) is the solution of the x-equation evaluated at t = 0:

by + ikoz® = Q(x,0,K)®, 0< x < co,Imk >0
ikx 0
o(x, k) = ¢ ((1> +o(1)) as X — oo,
Q(X,O,k) — < _0 qO(X)>

—Q@(x) O

m Given {go(t), g1(t)}, determine A(k; T), B(k; T):
A(k; T) = 2K T&y(T k), B(ki T) = —e2K°Tdy(T, k),
where vector ®(x, k) is the solution of the f-equation evaluated at x = 0:

& + 2ikP03® = Q(0, 1, K)®, 0<t<T,

®(0, k) = (?)

p _ —|go(t)I? 2kgo(t) —igs(f)
Q0.4 k) = (2@0(0 i lge(tP )
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RHP for NLS innait-stripx >0,0<t< T

m Contour: ' = RUIR
® Jump matrix:

1+ r(k)[? F(k) k>0
r(k) 1) ’
1 0 .
Jo(k) = ok 1) e
TN 1 ek K eim
0 1 ’ =
14+ |r(k) + C(k; T)[2  F(k) + C(k; T) k<0
r(k) + C(k; T) 1 ’ ’
_ b(k) . BT o
where r(k) = 20" Ck;T)= —W with d = aA+ bB

(also works for T = +o0 if go(1), 91(t) = 0, t — o0)
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Eigenfunctions for NLS inhart-strip x > 0,0 < t < 7

Hint: Define W;(x, t, k), j = 1,2, 3 solutions (2 x 2) of the Lax pair equations
normalized at “corners” of the (x, t)-domain where the IBV problem is formulated:
W(0, T, k) = e=2K°Tos (W, (0, t, k) ~ e=2K103 as t — oo)
W,(0,0,k) = |
W3(x,0,k) ~ e~ "73 ag x — oo

They can be constructed as solutions of integral equations let . = \Uje(”‘”zikz’)%;
then

X . ~
p (k) = 1+ / eK01)93(Quy ) (y, £, k) dy
0

T -
_eikxé3/ e 4K (=7)53 (B, )(0, 7, k) d, M
t

X B A
pa(t k) = 1+ [ S0y, 1K) dy
0

t . ~ ~
s [ U Bup) (0,7, ) dr, @
0
pa(x, k) = | / K153 (Qug)(y, , K) dy. (3)
X

Here eAB := ¢ABe~A.
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Scattering for x-and t-equations

Integral equations: convenient for studying properties w.r.t k: analyticity; boundedness.
Indeed, this follows the analyticity/boundedness of the involved exponentials.

Being simultaneous solutions of x-and t-equation, they are related by two scattering
relations:

(i) \US(Xa tzk) = WZ(X7 tak)s(k) S= <_aB g)

. A B

(i) Wqy(x,t, k) =Va(x,t,k)S(k; T) S= B A
Then M is constructed from columns of W, W, and W3 following their analyticity and
boundedness properties w.r.t k, and the jump relation for RHP is re-written scattering
relations (i)+(ii) for W;.
For NLS in half-strip (T < oo) or in quarter plane (T = oo) with g;(t) — 0 as t — oo:
first column of Wy (x, t, k)e(*ikX*ZikZ’)Ua is bounded in {k : Imk > 0,Im k2 < 0}, efc.,
which leadsto ' = R UiR.
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Compatibility of boundary values: Global Relation

The fact that the set of initial and boundary values {qo(x), go(t), 91(¢)} cannot be
prescribed arbitrarily (as data for IBVP) must be reflected in spectral terms.

Indeed, from scattering relations (i)+(ii): S~ (k; T)s(k) = W~ '(x, t, k)Wa(x, t, k).
Evaluating this at x = 0, t = T and using analyticity and boundedness properties of W;
one deduce for the (12) entry of S—1s:

SHikET

A(k; T)b(k) — a(k)B(k; T) = O < ) , k— o0, Imk>0,Rek >0

This relation is called Global Relation (GR): it characterizes the compatibility of
{q0(x), 90(t), g1(t)} in spectral terms.

Typical theorem: Consider the IBVP with given go(x) and go(t). Assume that there
exists g1 (t) such that the associated spectral functions {a(k), b(k), A(k), B(k)} satisfy
the Global Relation. Then the solution of the IBVP is given in terms of the solution of
the RHP above. Moreover, it satisfies also the b.c. gx(0,t) = g1 (¢).
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Using Global Relation

1. GR can be used to describe the Dirichlet-to-Neumann map, i.e., to derive
g1(t) = gx(0, 1) from {go(x) = q(x,0), go(t) = (0, 1)};

gi(ty = 20 [ et (®a(t, k) — Ba(t, —K)) dk + ﬂ/ e~ 2K r () B, (1, K) dlk
™ aD m™ JobD

+g/ e 2K (K [By (1, k) — i (1, —K)] + igo(t))dk
™ JoD

But: nonlinear! (g is involved in the construction of <T>,-)
B In the small-amplitude limit, reduces to a formula giving g (t) in terms of go(t)
and qgo(x) (via r(k)); here NLS reduces to a linear equation igs + gxx = 0.
B This suggests perturbative approach: given go(t) say periodic with small
amplitude, one derives a perturbation series for gy (t) with periodic terms.
2. For some particular b.c. (called linearizable): use additional k-invariance in
t-equation for expressing all ingredients in jump matrix in terms of spectral data
associated with initial data only. Example: IBVP with homogeneous Dirichlet b.c.
(go(t) = 0); also Neumann b.c. (g4 (t) = 0) and mixed (Robin) b.c.
3. For T = oo:if go(t) = 0as t — oo and assuming that g;(t) — 0, the GR takes
the form
A(k)b(k) — a(k)B(k) =0, Imk >0,Rek>0
Since the structure of the RHP is similar to that for whole-line problem, one can
study long-time behavior of solution via nonlinear steepest descent.
But: parameters of the asymptotics - in terms of A(k), B(k), which are not known

for a well-posed IBVP. 1841



IBV problem with oscillatory b.c.

For T = oo: the approach can be implemented for boundary
values non-decaying as t — oo. But for this: one needs correct
large-time behavior of g(t) associated with that of the given
9o(1); this is because both gy(t) and g1(t) determine the
spectral problem for t-equation and thus the structure of
associated spectral functions A(k), B(k).
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Dirichlet-to-Neumann map

Let (0, t) = ae?“! (g(0,1) — ae?™! — 0, t — 00)
Neumann values (gx(0, t)):

(i) numerics:
. a?—w 2
. < —
(0, 1) ~ ce®@t o= gioy) g, ws 23a
+av2w —a?, w> 5
(i) theoretical results: agreed with numerics (for all x > 0, t > 0) provided c as
above.

Question: Why these particular values of ¢?
(the spectral mapping {go, g1} — {A(k), B(k)} is well-defined forany c € C !)

Idea: Use the global relation (its impact on analytic properties of A(k), B(k)) to specify
admissible values of parameters «, w, C.
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Numerics: Neumann values, w < —3a?

Neumann values gx(0, t) for « = 0.5 and w = —1.75.
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The numerics agree with gx(0, t) = 2iaS q(0, t).
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Theorem 1: w < —3a?

Consider the Dirichlet initial-boundary value problem for NLS

e igi+guw +2|9Pq=0, xteR,,
e g(x,0) = qo(x) fast decaying,

e q(0,1) = go(t) = ae?“! time-periodic, a > 0,

e go(0) = 90(0).

> Assume gy(0, t) ~ 2iaBe?“! as t — +oo with § = |/ <5%

Let £ := 7. Then for large t, the solution g(x, t) behaves differently in
3 sectors of the (x, t)-quarter plane (in agreement with numerics):

(i) € > B8 = q(x,t)looks like decaying modulated oscillations of
Zakharov-Manakov type.

(i) /B2 —202 <& < B = q(x,t) looks like a modulated elliptic
wave.

(i) 0 <€ < /B2 —2a2 = q(x,t) looks like a plane wave.
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Three regions for w < —3a?
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Asymptotics for w < —3a?

o {=5>0
q(x,t) = \% p(—)eHiEP 2P (—E) og tio(~€) | 0(\}?)
e B—aVv2< < B

03[Bgt/2m + BuA/2m + U_] 03[U.] aig. (e)r-2is(e)
q(x, t) ~ [a+Im d(¢)] 03[Bgt/2m + B,A/2m + U] 63[U— ]

e 0<(<B—aVve:

q(x, t) = alilPxFwi=o(@)] O<\1/f)

The parameters (functions of §) d, By, B, g, ¢ can be expressed in
terms of the spectral functions associated to IB data

{qo(x), 90(t), 91 (1)}
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The RHP for NLS: the contour

for w < —3a?, assuming g (0, t) ~ 2iaf e?*!

-+
E D, Dy
—\+ T
\Y
RS Kok ke > +
— — 5 73
5
o
E Dy Dy

+1—-

F=RU~yU5UTUT with E = -8 + i

25/41



The RHP for NLS: the jump matrix

1 — 5(k)e—2ito(k)
2itg(k) pke 2 k € (=00, k+),
—p(k)e” 1+ |p(k)|
1 _’—,(k)e—Zi[G(k)
i k S ) )
—r(k)Cle(k) 1 + |r(k)|2 (K/+ OO)
1 0
c(K)e? ) 1 ke,
J(x,t k) = T i
1 C(k)ef21t9(k) B
keTl,
0 1
1 0
f(k)eZite(k) 1 ken,
1 _F(k)e—2itotk)
(ke k €7.
0 1
where 0(k) = 0(k, &) = 2k* + 4§k‘ with | ¢ = 4%
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Numerics: Neumann values, w > a?/2

Neumann values qx(0, t) for a = 0.5 and w = 1.
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The numerics agree with gy (0, t) = 2a,3 (0, t).
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Theorem 2: w > a?/2

Consider the Dirichlet initial-boundary value problem for NLS .

e igi+Qu+2|92g=0, x,tcR,.
e q(x,0) = qo(x) fast decaying.

e g(0,1) = go(t) = ae?! time-periodic, a > 0, |w > a?/2

* qo(0) = go(0).
> Assume that gy(0, t) ~ 2a3 e?t with § = +1/2w — a2,

Thenfor{ =z >¢>0,
1 L2 .2 . 1
X, t) = — p(—&)eH& 2 (=8 log t+id(=€) 4 o( —
ax,t) = 2 (=€) ()
(decaying modulated oscillations of Zakharov-Manakov type), where

parameters p(¢) and ¢(&) are determined by the IB data qo(x), go(t),
and g4(t) via the spectral functions a(k), b(k), A(k), B(k).
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Theorem 3: admissible {«,w, ¢}

Let g(x, t) be a solution of the NLS (x > 0, t > 0) such that:
e q(0,1) —ae?! »0ast— +oo (a>0,w € R)

e gy(0,1) — ce?™! » 0ast— +oo, forsome c e C

e g(x,t) > 0as x — +oo (Vt > 0)

Then the admissible values of {«,w, ¢} are given by:
e w< —3a? ¢ =2 azg‘*’

2
o w>%, c=+aVv2w — a2,
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Idea of proof

1. Forall {go, g1} whose asymptotics is associated with {«, w, ¢}, where ¢ = ¢y +ico,
the t-equation of the Lax pair for the NLS (at x = 0) has a solution ®(t, k),
ke X ={k:ImQ(k) =0}, s.t.

®(t, k) = W(t,k)(1+ 0o(1)) as t — +oo, Where

\U(t, k) — elwtos E(k)e—iﬂ(k)krs’

— 1 —H _
By =220 (1, TEeE ) with Hk) = (k) - 2K 1 2 — w,
2Q " 2ak+ic 1

Q2(k) = k* + 4wk® — dacok + (a? —w)? + & + 2.

2. ' =X U {branch cuts} is the contour for the RH problem for the inverse spectral
mapping {A(k), B(k)} — {90, 91}
3. Compatibility of {qo, go, 91} in spectral terms: global relation

A(Kk)b(k) — a(k)B(k) =0, ke D={k:Imk >0,ImQ(k) > 0}.

4. Existence of a (finite) arc of [y = X N {branch cuts} in D contradicts the global
relation (particularly, the continuity of b(k) and a(k) across the arc).
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Non-admissible spectral curves: w > 0, |

<0
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Non-admissible spectral curves

02:0,0<w<%2 6 =0, <a?(2w—a?)
= + 1 ) O
0,/ 0,
\/ 3 - B
RS e R Ty
/\ + fiesees %
- 7\.\_\_‘“\ -
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Admissible spectral curves: w < 0

Range w < 0, ¢; > 0: the only admissible case is when the finite arc
of {Im Q(k) = 0} lying on the right branch of the curve {Im Q?(k) = 0}
degenerates to a point on R, i.e., when Q?(k) has a double, positive
zero. In terms of {«, w, ¢}, this corresponds to:

c1=006= Oé\/2(042 — w).
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Numerics for —3a? < w < a?/2, |l
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Real part of wave function

Real part of Neumann data

50 100 150
x

Real part of g(x, t)

Go(x) =0, go(t) = a + O(c™"*¢)

0.06 T T
— Neumann real part
+ _Asympt. real part

-0.02

-0.04

0 5 10 15 20

Neumann data

34/41



Numerics for —30? < w < a?/2, lli
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Numerics for —3a? < w < a?/2, IV

a=05 w=0 Q(x) =0, go(t) =a+ O(e_m'z)
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Numerics for —3a? < w < a?/2, V

Q(x) =0, go(t) = a + O(e~ ")

Real part of wave function
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Linearizable cases: q(0,t) = 0 or gx(0,f) =0 or

gx(0, t) + pq(0, t) = 0 (Robin b.c.)

(i) additional symmetry: A(—k) = A(k), B(—k) = —5-£B(k)

(i) global relation: A(k)b(k) — B(k)a(k) =0,Imk > 0,Rek >0

(i)+(ii) allows “solving” A(k), B(k) in terms of a(k), b(k), so that the
jump matrix for RHP can be expressed in terms of a(k) and b(k) (and
p) only:

b(—k) 2k +ip

~ a(k) (2k —ip)a(k)a(—k) — (2k + ip)b(k)b(—k)

Moreover, the RH problem on the cross can be deformed to RH
problem on the real line (associated with initial value problem for NLS
on the whole line)
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Relationship to other problems

Novel integral representations for the solution of linear
problems (A.S. Fokas: Unified Approach). For linear
problems:

(i) the Lax pair representation can be constructed
algorithmically;
(i) the global relation that couples given initial and
boundary data with unknown boundary values can be
solved efficiently.
m initial-boundary value problems for evolution PDEs
containing x-derivatives of arbitrary order
m elliptic equations in two variables (like the Laplace, the
Helmholtz equations) formulated in the interior of a convex

polygon

initial-value (Cauchy) problems with non-decaying
(step-like) initial data
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